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Abstract We consider the problem of choosing design parameters to minimize
the probability of an undesired rare event that is described through the average of
n i.i.d. random variables. Since the probability of interest for near optimal design
parameters is very small, one needs to develop suitable accelerated Monte-Carlo
methods for estimating its value. One of the challenges in the study is that simulat-
ing from exponential twists of the laws of the summands may be computationally
demanding since these transformed laws may be non-standard and intractable.
We consider a setting where the summands are given as a nonlinear functional
of random variables, the exponential twists of whose distributions take a simpler
form than those for the original summands. We use techniques from Dupuis and
Wang (2004,2007) to identify the appropriate Issacs equations whose subsolutions
are used to construct tractable importance sampling (IS) schemes. We also study
the closely related problem of estimating buffered probability of exceedance and
provide the first rigorous results that relate the asymptotics of buffered proba-
bility and that of the ordinary probability under a large deviation scaling. The
analogous minimization problem for buffered probability, under conditions, can be
formulated as a convex optimization problem. We show that, under conditions,
changes of measures that are asymptotically efficient (under the large deviation
scaling) for estimating ordinary probability are also asymptotically efficient for
estimating the buffered probability of exceedance. We embed the constructed IS
scheme in gradient descent algorithms to solve the optimization problems, and
illustrate these schemes through computational experiments.
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1 Introduction

When the objective function of an optimization problem is the expectation of a
random variable, one can estimate that expectation by a sample average. If the
standard deviation of that random variable is large relative to its mean, variance
reduction techniques such as IS can be used to reduce the sample size needed for a
reliable estimate of the mean, see (Chen et al. 1993; Dupuis and Wang 2004, 2007;
Evans and Swartz 2000; Glasserman et al. 1997; Owen and Zhou 2000; L’Ecuyer
and Tuffin 2011; Ridder 2005) and references therein for related research. Here we
consider problems of the form

min
θ∈Θ

E exp

{
−nF

(
1

n

n∑
i=1

G(Xi, θ)

)}
, (1)

where Xi, i = 1, · · · , n are i.i.d random variables in Rh, Θ ⊂ Rd, G : Rh×Θ → Rm
is continuous, and F : Rm → R∪ {∞} is measurable. For notational simplicity we
write Ui = G(Xi, θ) and Yn = 1

n

∑n
i=1 Ui, so (1) can be equivalently written as

minθ∈Θ E exp {−nF (Yn)}.
The formulation (1) includes a special case in which F (y) = 0 for y in a

measurable set A ⊂ Rm and ∞ otherwise. In this case (1) becomes

min
θ∈Θ

P (Yn ∈ A) = min
θ∈Θ

P

(
1

n

n∑
i=1

G(Xi, θ) ∈ A

)
. (2)

In many applications in engineering, finance, and insurance, decisions need
to be made to reduce the probability for an undesirable event (such as system
breakdown) to occur. Such an event is often the result of the accumulative effects
of a large number of individual events over a long period, which we model as
{Yn ∈ A}, with n a fixed large number. Under conditions, for values of θ such
that E [U1] 6∈ clA, P (Yn ∈ A) converges to 0 exponentially fast as n → ∞ by the
theory of large deviations, so its value is very small for a large n, making it hard
to estimate using i.i.d samples of Yn.

A natural approach for estimating probabilities of the form on the left side of
(2) is by computing Monte-Carlo averages of the form 1

N

∑N
j=1 1{Y (j)

n ∈A}
where

Y
(1)
n , · · · , Y (N)

n are iid distributed as Yn. Note that there are two parameters: the
parameter n is fixed and describes the event of interest while the parameter N
represents the size of the Monte-Carlo sample to estimate the probability in (2)
for a given value of n. When the event of interest {Yn ∈ A} has small probabil-
ity, such Monte-Carlo estimates perform poorly. An effective way to estimate the
probabilities of such rare events and expected values of more general risk sensitive
functionals as on the right side of (1) is using IS techniques based on large devi-
ations theory. Large deviation based IS techniques were introduced in (Siegmund
1976) in estimating the error probabilities of the sequential probability ratio test.
Subsequent papers exhibited the good performance of specific estimators devel-
oped using this technique, see (Bucklew 1990; Collamore 2002; Sadowsky 1991).
However, such estimators can perform poorly as shown in (Glasserman et al. 1997),
if the necessary and sufficient conditions for effective variance reduction in (Chen
et al. 1993; Sadowsky and Bucklew 1990; Sadowsky 1996) are violated. In order
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to address this, later papers introduced adaptive IS schemes that are more gener-
ally applicable. Among these, (Dupuis and Wang 2004, 2007) are most related to
our work. (Dupuis and Wang 2004) connects the problem of constructing asymp-
totically efficient adaptive IS schemes with certain deterministic dynamic games.
(Dupuis and Wang 2007) uses subsolutions to the Isaacs equations for such games
to construct flexible and simple dynamic IS schemes that achieve asymptotic effi-
ciency.

For a direct application of the IS techniques from (Dupuis and Wang 2004,
2007) to the situation here, one would need to use a parametric family of expo-
nential changes of measure to generate the replacements for the Ui given each
fixed θ. Such a scheme is easy to implement when the distribution of Ui is of a
simple form. For example if Ui is a normal random variable then an exponential
change of measure is also a normal distribution with a shifted mean. However,
for more general distributions and when the dimension m is large, sampling from
the exponential tilt distribution can be computationally expensive (see discussion
at the end of Section 2.1). This problem gets much more severe in the optimiza-
tion problem we study, in which estimates for the objective function need to be
computed for many different values of θ. By writing Ui = G(Xi, θ), we aim to
capture the complexity of the distribution of Ui through the function G and leave
the distribution of Xi in a fixed simple form. In particular, we are interested in
a setting where simulating from exponential tilts of distributions of Xi is simpler
than that from exponential tilts of Ui. In this work we develop an IS technique
based on a change of measure on the distribution of Xi, which is computationally
much less demanding compared to a scheme that uses a change of measure directly
based on Ui. The scheme is inspired by (Dupuis and Wang 2004, 2007) and, as
in these papers, is guided by the Issacs equation of a certain dynamic game. The
Issacs equation is given in terms of a different Hamiltonian (see (24)) than the
one that arises in the formulation where the change of measure is done directly
on the sequence {Ui} (see (11)). We show that generalized subsolutions of this
Issacs equation can be used to construct IS algorithms, with guaranteed lower
bounds on asymptotic performance (as measured by the asymptotic exponential
decay rate of the second moment), that are based on dynamic change of measure
for the sequence {Xi}. Similar to (Dupuis and Wang 2004, 2007), the decay rate is
governed by the initial value of the subsolution (i.e. at (t, x) = (0, 0)), with larger
initial values implying a higher decay rate.

When we embed the above IS procedure in a gradient descent method to find
the optimal θ for (1), both the objective values and the gradients need to be
estimated by samples. If the function F violates certain continuity/differentiability
conditions, as in the case of (2), the gradients cannot be directly estimated from
sample functions. Thus, we will approximate the original F by an a.e. differentiable
and Lipschitz continuous function and apply the IS methods to the expected values
of the resulting risk sensitive functional. Moreover, as shown in Theorem 2, the
logarithm of the objective function of (1) after scaled by 1/n converges to a limiting
function under certain conditions. The optimal solution and value of the limiting
problem, when available, can be used as approximations of those of the original
problem with fixed large n.

The problem (2) or its smooth approximation will not be convex in general,
so the gradient descent method will not distinguish local solutions from global
solutions. For the case m = 1 and A = [c,∞), there is an alternative reliability
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measure called the buffered failure probability (Rockafellar and Royset 2010) or
the buffered probability of exceedance (Mafusalov et al. 2015). Under mild condi-
tions, minimization of the buffered failure probability over a class of probability
distributions can be transformed into a convex optimization problem and is there-
fore more tractable. The buffered failure probability is always greater than or equal
to the corresponding probability, and the two values are often close to each other
when the probability of the random variable of interest taking on large values is
small (see e.g. (Rockafellar and Royset 2010) for a discussion of this point). In this
work we make the second statement precise in one particular setting. Specifically,
we show that under conditions, probabilities of the form on the right side of (2)
have the same exponential decay rate, as n → ∞, as the corresponding buffered
failure probabilities (see Theorem 3). To the best of our knowledge this is the
first rigorous result that relates the asymptotics of a buffered failure probability
and ordinary probability under a large deviation scaling. This result in particu-
lar suggests that the IS change of measure that are appropriate for estimating
the probability on the right side of (2) should also be suitable for constructing
estimators for the corresponding buffered failure probability. Under appropriate
conditions, this is indeed the case as is shown in Theorem 4 and Theorem 5. One
can view the buffered failure probability as a reliability measure that is of indepen-
dent interest or, in view of its closeness to the ordinary exceedance probability, the
solution to the buffered failure probability minimization problem can be used as an
intermediate step for selecting the initial point in the algorithm for the probability
minimization problem.

For comprehensive overviews on optimization under probabilistic (chance) con-
straints see (Prékopa 2013) and (Shapiro et al. 2009, Chapter 4). Various methods
for solving chance-constrained optimization have been proposed, see (Bremer et al.
2015; Calafiore and Campi 2006; Dentcheva and Martinez 2013; Nemirovski and
Shapiro 2006; Pagnoncelli et al. 2009; Van Ackooij and Henrion 2014). When the
chance constraints involve a rare event probability, in some cases, IS can be com-
bined with the SAA approach by exploiting problem structure to reduce the sample
estimation variance uniformly with respect to the decision variables (Barrera et al.
2016).

The paper is organized as follows. Section 2 reviews IS techniques that are
based on large deviation analyses and proposes a new IS scheme that is based on
changes of laws of the sequence {Xi} rather than directly transforming the proba-
bility laws of the sequence {Ui}. This section also provides an asymptotic bound on
the second moment of the IS estimator. Section 3 studies the limiting behavior of
the problem (1) as n→∞, as well as convergence properties of the approximation
problem for (2) in which probabilities are replaced by expected values of certain
risk sensitive functionals. Section 4 studies the buffered failure probability in the
present setting and its estimation using IS methods. Section 5 presents the opti-
mization algorithm and uses several numerical examples to illustrate the method.
Throughout the paper, P(Rh) denotes the space of all probability measures on
Rh.
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2 Importance sampling based on large deviations analysis

In this section, we consider the estimation of the objective value of (1) for a fixed
θ. Since θ is fixed, we suppress it from notation in this section and consider the
estimation of

E exp {−nF (Yn)} , (3)

where Yn = 1
n

∑n
i=1 Ui is the average of i.i.d. random variables Ui = G(Xi) for

i = 1, · · · , n. The function G : Rh → Rm is continuous, and F : Rm → R ∪ {∞}
is measurable. Let η be the distribution of X1 and ξ be the distribution of U1,
namely ξ = η ◦G−1.

If the distribution of the random variable Yn takes a simple form, then one
may consider a change of measure with respect to the distribution of Yn directly.
However, by its definition, the distribution of Yn is in general rather complicated
and so one needs to construct the change of measure through the underlying distri-
butions of Ui. Even in situations where the distribution of Yn is of simple form, e.g.
Gaussian, it may be advantageous to construct a change of measure that exploits
the form of Yn and transforms the distributions of summands Ui in a systematic
manner. Subsection 2.1 below reviews the estimation methods from (Dupuis and
Wang 2004, 2007) that construct a dynamic change of measure on the distribu-
tions of {Ui} and provide results characterizing the asymptotic performance of
the resulting estimator. One of the challenges in implementing these methods is
that even if the distribution η of Xi were of a simple form, for a general G the
distribution of Ui may be rather complicated, so sampling from the exponential
twists of the distribution of Ui may become hard. In Subsection 2.2 we provide an
alternative approach that constructs an estimator using a dynamic change of mea-
sure with respect to the distributions of Xi, and establish an asymptotic bound
on the second moment for the resulting IS estimator.

In either approach, the replacement random variables will in general not be
i.i.d., and the conditional distribution of the jth random variable given the previous
j − 1 variables is related to the original distribution by an exponential tilt, i.e.,
the Radon-Nikodym derivative of the replacement measure with respect to the
original measure is an exponential function with a linear exponent (see e.g. (6)).
Parameters for these exponents are chosen based on solutions of certain partial
differentiable equations. These equations arise when one considers the problem of
minimizing the second moment as a certain stochastic control problem and studies
the associated dynamic programming equations. The asymptotic performance of
the resulting change of measure is established using methods from the theory of
large deviations.

The starting point of the analysis are the logarithms of moment generating
functions of the original random variables. For (a, α) ∈ Rh+m, we define

H(a, α) = logE
[
e〈a,X1〉+〈α,G(X1)〉

]
. (4)

We also consider functions H1 : Rh → R and H2 : Rm → R as

H1(a) = H(a, 0), and H2(α) = H(0, α), a ∈ Rh, α ∈ Rm. (5)

Thus, H1 is the log-moment generating function of X1 and H2 is that of U1 =
G(X1).
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2.1 The exponential change of measure on variables Ui

In this subsection we review results from (Dupuis and Wang 2004, 2007). As-
sume H2(α) < ∞ for all α ∈ Rm. We will replace the original random variables
U1, · · · , Un by new random variables Ūn1 , · · · , Ūnn , that have (conditional) distri-
butions of the form

e〈α,u〉−H2(α)ξ(du) (6)

where α ∈ Rm and ξ is the distribution of U1. In general, the parameter α that
defines the sampling distribution does not need to be a constant, and can depend
on values of summands that precede the current variable. Formally, suppose a
function ᾱ(x, t) : Rm × [0, 1] → Rm is given. To construct a dynamic change
of measure based on ᾱ one proceeds as follows. Suppose Ūn1 , · · · , Ūnj have been
simulated. Define

Ȳ nj =
1

n

j∑
i=1

Ūni (7)

and simulate Ūnj+1 from the distribution

e〈ᾱ(Ȳ nj ,
j
n

),u〉−H2(ᾱ(Ȳ nj ,
j
n

))ξ(du). (8)

Thus the conditional distribution of Ūnj+1 given
{
Ȳ ni , i = 1, . . . j

}
is given by (8).

Iterating we obtain
{
Ūnj
}

1≤j≤n and
{
Ȳ nj
}

1≤j≤n. Using successive conditioning

Zn = e−nF (Ȳ nn )
n−1∏
j=0

e−〈ᾱ(Ȳ nj ,
j
n

),Ūnj+1〉+H2(ᾱ(Ȳ nj ,
j
n

)) (9)

is an unbiased estimator for (3), and the above product of exponentials is the
Radon-Nikodym derivative of the distribution of (U1, · · · , Un) with respect to that
of (Ūn1 , · · · , Ūnn ).

If the function ᾱ is a constant, then the above scheme reduces to a static change
of measure in which (Ūn1 , · · · , Ūnn ) are i.i.d.. Different choices of the function ᾱ will
produce different distributions for Zn. In order to reduce the number of samples
needed to the greatest extent, the idea is to choose ᾱ in a way to minimize the
variance of Zn. It is hard to characterize the optimal choice of ᾱ for a fixed value
of n, as the distribution of Yn is rather complicated. However, as n→∞ the (tails
of the) distribution of Yn can be described using large deviations theory, which
leads to a characterization of an asymptotically optimal choice of ᾱ in terms of the
solution of a partial differential equation known as the Isaacs equation(Dupuis and
Wang 2004). We now introduce this equation. Let L2 be the Legendre transform
of H2 defined as

L2(β) = sup
α∈Rm

(〈α, β〉 −H2(α)) , β ∈ Rm. (10)

It is possible that L2(β) =∞ for some β. Define H2 : R3m → R ∪ {∞} as

H2(s;α, β) = 〈s, β〉+ L2(β) + 〈α, β〉 −H2(α). (11)

The Isaacs equation is then given as

Wt(y, t) + sup
α∈Rm

inf
β∈Rm

H2(DW (y, t);α, β) = 0 (12)
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where W : Rm × [0, 1]→ R is a continuously differentiable function, Wt(y, t) is its
derivative w.r.t. t, and DW (y, t) is its derivative w.r.t. y. If W satisfies

Wt(y, t) + sup
α∈Rm

inf
β∈Rm

H2(DW (y, t);α, β) ≥ 0 (13)

instead of (12) then it is a (classical) subsolution to (12). If such a subsolution
W also satisfies the terminal condition W (y, 1) ≤ 2F (y) for all y ∈ Rm, then, as
is shown in (Dupuis and Wang 2004, 2007), the dynamic change of measure as in
(8), constructed using the supremizer α(y, t) for the second term in (13), produces
an estimator Zn as in (9) (with ᾱ replaced by α) whose second moment decays
exponentially at rate W (0, 0):

lim inf
n→∞

{
− 1

n
logE

[
(Zn)2

]}
≥W (0, 0). (14)

On the other hand, under standard conditions, the limit

γ = lim
n→∞

{
− 1

n
logE exp {−nF (Yn)}

}
(15)

exists (Dupuis and Ellis 2011). By Jensen’s inequality, if Z̃n is any unbiased esti-
mator of (3)

lim sup
n→∞

{
− 1

n
logE

[
(Z̃n)2

]}
≤ lim sup

n→∞

{
− 1

n
log
(
E
[
Z̃n
])2
}

= 2γ,

so 2γ is the largest decay rate for the second moment among all unbiased esti-
mators. Sometimes one can find a subsolution with W (0, 0) = 2γ, in which case
the estimator in (9) constructed from the supermizer α in (12) is asymptotically
efficient.

Sometimes one needs more than one subsolution in order to construct an IS
estimator that achieves asymptotic efficiency. This leads to the following notion of
a generalized subsolution/control(Dupuis and Wang 2007).

Definition 1 Given K ∈ N, consider functions W̄ : Rm × [0, 1] → R, ρk : Rm ×
[0, 1]→ R, and ᾱk : Rm× [0, 1]→ Rm for 1 ≤ k ≤ K. The collection (W̄ , ρk, ᾱk) is
called a generalized subsolution/control to the Isaacs equation (12), and (ᾱk, ρk)
the corresponding generalized control pair, if the following conditions hold:

(i) For all (y, t), {ρk(y, t)} is a probability vector.
(ii) W̄ is continuously differentiable, W̄t(y,t)=

∑K
k=1 ρk(y,t)rk(y,t), and DW̄ (y,t)

=
∑K
k=1 ρk(y, t)sk(y, t).

(iii) For each k = 1, . . . ,K, it holds that

rk(y, t) + inf
β∈Rm

H2(sk(y, t); ᾱk(y, t), β) ≥ 0. (16)

(iv) The functions (rk, sk, ρk, ᾱk) are uniformly bounded and continuous.
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Roughly speaking, a generalized subsolution/control as above is used as follows.
At each step, one of the K functions ᾱk is randomly selected to determine the
change of measure for the summand and the likelihood of a selection is deter-
mined by a probability vector valued function {ρk}Kk=1. More precisely, with a
generalized subsolution/control (W̄ , ρk, ᾱk) in hand, one can construct a dynamic
change of measure as follows. Let Ȳ n0 = 0. For j = 0, . . . , n−1, having constructed{
Ūni
}

1≤i≤j and
{
Ȳ ni
}

1≤i≤j , we generate a multinomial random variable I with

P (I = k) = ρk(Ȳ nj ,
j
n ) for k ∈ {1, 2, . . . ,K}. Next, we simulate Ūnj+1 from the

distribution
e〈ᾱI(Ȳ

n
j ,

j
n

),u〉−H2(ᾱI(Ȳ
n
j ,

j
n

))ξ(du), (17)

namely the conditional distribution of Ūnj+1 given
{
Ūni
}
i≤j and I is given by (17).

Define Ȳ nj+1 = Ȳ nj + 1
n Ū

n
j+1. It follows from a simple calculation (see (Dupuis and

Wang 2007)) that

Zn = e−nF (Ȳ nn )
n−1∏
j=0

[ K∑
k=1

ρk(Ȳ nj ,
j
n )e〈ᾱk(Ȳ nj ,

j
n

),Ūnj+1〉−H2(ᾱk(Ȳ nj ,
j
n

))
]−1

(18)

is an unbiased estimator for (3) with the n-fold product above defining the Radon-
Nikodym derivative of the distribution of (U1, · · · , Un) w.r.t that of (Ūn1 , · · · , Ūnn )
(evaluated at (Ūn1 , · · · , Ūnn )). Once again, when the terminal condition W̄ (y, 1) ≤
2F (y) holds for all y ∈ Rm, the second moment of Zn decays exponentially at
a rate no slower than W̄ (0, 0), namely (14) is satisfied with W replaced by W̄ .
Thus if one can find a W̄ with W̄ (0, 0) = 2γ, one has an asymptotically efficient
IS estimator. One seeks a W̄ which has the largest possible value at (0, 0).

When ξ is a simple form distribution (such as a Normal, Gamma, Poisson,
exponential or a binomial), the tilted distribution (6) typically belongs to the same
distribution family with a different parameter. In such cases, samples from (8) can
be generated easily. However, in general the distribution of Ui = G(Xi) may not
take a simple form. To simulate from (8) in such a general situation, one needs to
invert the conditional cumulative distributions and then evaluate them at uniform
random variables. However, with a general nonlinear function G, the distribution
ξ is rarely available in a tractable form, making such a procedure difficult to
start with. Even when ξ is available in a closed form, inverting the conditional
cumulative distributions requires iteratively carrying out numerical integrations,
which is highly computationally intensive. For these reasons, the practical utility
of changing measures on Ui is limited to situations in which ξ takes a simple form.

2.2 The exponential change of measure on variables Xi

The computational issue of simulating from the tilted distribution (17) is largely
due to the complexity of ξ, the distribution of Ui = G(Xi). This motivates us to
consider the alternative approach of conducting the change of measure on variable
Xi, whose distribution η is assumed to be of a simpler form. In this subsection,
we assume that H(a, α) < ∞ for all (a, α) ∈ Rh+m, and let L be the Legendre
transformation of H:

L(b, β) = sup
(a,α)∈Rh+m

(
〈a, b〉+ 〈α, β〉 −H(a, α)

)
, (b, β) ∈ Rh+m. (19)
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Then L has the following representation (Dupuis and Ellis 2011, Lemma 6.2.3):

L(b, β) = inf
µ∈P(Rh)

{
R(µ‖η) |

∫
Rh
xµ(dx) = b,

∫
Rh
G(x)µ(dx) = β

}
, (20)

where R(µ‖η) is the relative entropy of µ with respect to η defined as

R(µ‖η) =

∫
Rh

log
dµ

dη
dµ (21)

when µ is absolutely continuous w.r.t. η, and ∞ otherwise.
Recall that H1 is the log-moment generating function of X1. In the change of

measure scheme, we will replace random variables X1, · · · , Xn by new variables
X̄n

1 , · · · , X̄n
n that have (conditional) distributions ηa of the form

ηa(dx) = e〈a,x〉−H1(a)η(dx), (22)

where a ∈ Rh and η as before is the distribution of X1. The values of a will be
determined dynamically by a function ā : Rm × [0, 1] → Rh as follows. Let Ȳ n0 =
0. For j = 0, · · · , n − 1, having constructed

{
X̄n
i

}
1≤i≤j ,

{
Ūni = G(X̄n

i )
}

1≤i≤j
and

{
Ȳ ni
}

1≤i≤j via (7), let ηā(Ȳ nj ,
j
n

) be the distribution of X̄n
j+1 conditioned

on X̄n
1 , . . . , X̄

n
j and draw a sample X̄n

j+1 from this conditional distribution. Let
Ȳ nj+1 = Ȳ nj + 1

nG(X̄n
j+1). Thus recursively we obtain

{
Ȳ ni , Ū

n
i , X̄

n
i

}n
i=1

. Using
these we define the estimator

Zn = e−nF (Ȳ nn )
n−1∏
j=0

eH1(ā(Ȳ nj ,
j
n

))−〈ā(Ȳ nj ,
j
n

),X̄n
j+1〉, (23)

which as before is an unbiased estimator for (3). In comparison to schemes in-
troduced in Subsection 2.1, the main advantage of the scheme proposed in the
current section is the ease of implementation because, as discussed earlier, when
G takes a complex form, one can simulate from ηā(Ȳ nj ,

j
n

) more easily than from

the distribution in (6). We now introduce an Issacs equation associated with the
control problem of minimizing the asymptotic second moment of Zn. The equation
is derived using similar formal dynamic programming heuristics as in (Dupuis and
Wang 2004) however we omit these details. Define H : R2m+2h → R ∪ {∞} as

H(s, a, b, β) = 〈a, b〉+ 〈s, β〉+ L(b, β)−H1(a), s, β ∈ Rm, a, b ∈ Rh. (24)

Then the Issacs equation is given as

Wt(y, t) + sup
a∈Rh

inf
(b,β)∈Rh+m

H(DW (y, t), a, b, β) = 0, (25)

along with the terminal condition W (y, 1) = 2F (y). We will now use this equation
to construct IS schemes. As in Section 2.1, we begin with some definitions. A
continuously differentiable function W̄ : Rm × [0, 1]→ R is a classical subsolution
to (25) if it satisfies

W̄t(y, t) + sup
a∈Rh

inf
(b,β)∈Rh+m

H(DW̄ (y, t), a, b, β) ≥ 0 (26)
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for each (y, t) ∈ Rm× [0, 1]. If functions W̄ : Rm× [0, 1]→ R, ρk : Rm× [0, 1]→ R,
āk : Rm × [0, 1] → Rh, 1 ≤ k ≤ K satisfy all conditions in Definition 1 (with ᾱk
replaced by āk) except that (16) is replaced by

rk(y, t) + inf
(b,β)∈Rh+m

H(sk(y, t); āk(y, t), b, β) ≥ 0, (27)

then (W̄ , ρk, āk) is said to be a generalized subsolution/control to (25). For the
special case in which K = 1 and ρ1 = 1, we abbreviate the notation (W̄ , ρk, āk)
as (W̄ , ā) and call it a subsolution/control pair.

A dynamic change of measure, analogous to Section 2.1, based on a general-
ized subsolution/control (W̄ , ρk, āk) is constructed as follows. Let Ȳ n0 = 0. For j =
0, . . . , n−1, having constructed

{
X̄n
i

}
1≤i≤j and

{
Ȳ ni
}

1≤i≤j , we generate a multi-

nomial random variable I with (conditional) probabilities P (I = k) = ρk(Ȳ nj ,
j
n )

for k ∈ {1, 2, . . . ,K}. Next, we sample X̄n
j+1 from the distribution

e〈āI(Ȳ
n
j ,

j
n

),x〉−H1(āI(Ȳ
n
j ,

j
n

))η(dx), (28)

and define Ȳ nj+1 = Ȳ nj + 1
nG(X̄n

j+1). Finally, we define

Zn = e−nF (Ȳ nn )
n−1∏
j=0

[
K∑
k=1

ρk(Ȳ nj ,
j
n )e〈āk(Ȳ nj ,

j
n

),X̄n
j+1〉−H1(āk(Ȳ nj ,

j
n

))

]−1

, (29)

which as before is an unbiased estimator for (3). The appeal of the estimator in
(29) over that in (18) is that, frequently it is simpler to simulate from (28) than
from (17). Theorem 1 below is an analogue of (Dupuis and Wang 2007, Theorem
8.1) and shows that the second moment of Zn decays exponentially at a rate no
slower than W̄ (0, 0).

Theorem 1 Suppose H(a, α) < ∞ for all (a, α) ∈ Rh+m, that (W̄ , ρk, āk) is a
generalized subsolution/control to (25) and satisfies the terminal condition W̄ (y, 1)
≤ 2F (y) for all y ∈ Rm, and that Zn is as in (29). Then

lim inf
n→∞

{
− 1

n
logE

[
(Zn)2

]}
≥ W̄ (0, 0).

Proof This proof is adapted from (Dupuis and Wang 2007). For 1 ∈ k ∈ K,
j = 0, · · · , n − 1 and y ∈ Rm, define ρnk,j(y) = ρk(y, jn ) and ānk,j(y) = āk(y, jn ).
Using a property of Radon-Nikodym derivatives, we write the second moment of
Zn in terms of the original variables X1, · · · , Xn as

V n =E
[
(Zn)2

]
=E

e−2nF (Y nn )
n−1∏
j=0

(
K∑
k=1

ρnk,j(Y
n
j )e〈ā

n
k,j(Y

n
j ),Xj+1〉−H1(ānk,j(Y

n
j ))

)−1
 ,

where Y nj = 1
n

∑j
i=1G(Xi), j = 1, · · · , n, Y n0 = 0. Next, letting B(y) = W̄ (y, 1),

we have by assumption that B(y) ≤ 2F (y). Define Ṽ n by replacing e−2nF (Y nn ) in
the above display with e−nB(Y nn ) and let W̃n = − 1

n log Ṽ n. The fact B(Y nn ) ≤



Minimization of Rare Event Probabilities 11

2F (Y nn ) and the convexity of the exponential function imply that V n ≤ Ṽ n. Hence
it suffices to show lim inf W̃n ≥ W̄ (0, 0).

Recall from the definition of generalized solutions that ρk, rk and sk are uni-
formly bounded which implies the Lipschitz continuity of W̄ . By assumption, H1

is finite everywhere. Since it is convex, it is continuous and bounded on any com-
pact set. Using these properties one can establish the following representation (see
(Dupuis and Wang 2007, Lemma A.1))

W̃n = inf
ν̄n∈P(Rnh)

{ 1

n
R(ν̄n‖η

⊗
n)+

E
[

1
n

∑n−1
j=0

∑K
k=1 ρ

n
k,j(Ỹ

n
j )
[
〈ānk,j(Ỹ nj ), X̃n

j+1〉−H1(ānk,j(Ỹ
n
j ))

]
+B(Ỹ nn )

]}
,

where η
⊗
n is the n-fold product measure of η, (X̃n

1 , · · · , X̃n
n ) follows the distri-

bution ν̄n, and Ỹ nj = 1
n

∑j
i=1G(X̃n

i ), j = 1, · · · , n, Ỹ n0 = 0. Using the chain rule

for the relative entropy, we can rewrite W̃n as

W̃n = inf
ν̄n∈P(Rnh)

E

 1

n

n−1∑
j=0

K∑
k=1

ρnk,j(Ỹ
n
j )
[
R(νnj ‖η) + 〈ānk,j(Ỹ nj ), X̃n

j+1〉−H1(ānk,j(Ỹ
n
j ))
]
+B(Ỹ nn )

 ,
where νnj is the conditional distribution of X̃n

j+1 given (X̃n
1 , · · · , X̃n

j ) (a random

probability measure on Rh). By defining

Jn(ν̄n)

= E

1
n

n−1∑
j=0

K∑
k=1

ρnk,j(Ỹ
n
j )
[
R(νnj ‖η)−H1(ānk,j(Ỹ

n
j ))+〈ānk,j(Ỹ nj ), X̃n

j+1〉
]
+B(Ỹ nn )

 ,
(30)

we have W̃n = inf ν̄n∈P(Rnh) J
n(ν̄n). To prove the theorem, it suffices to prove

lim inf Jn(ν̄n) ≥ W̄ (0, 0), (31)

for an arbitrary sequence ν̄n of probability measures on Rnh.
To prove (31), we will use a continuous time interpolation. To this end, for

j = 0, . . . , n − 1 and t ∈ [ jn ,
j+1
n ), define Ỹ n(t) = Ỹ nj and νn(dx|t) = νnj (dx),

and let Ỹ n(1) = Ỹ nn . Then define a probability measure νn on Rh × [0, 1] by
νn(A × C) =

∫
C
νn(A|t)dt for A ∈ B(Rh) and C ∈ B([0, 1]). In addition, define

another probability measure η′ on Rh × [0, 1] as the product measure

η′(dx× dt) = η(dx)dt. (32)

Note that νn is a random probability measure on Rh×[0, 1]. The distribution of νn

is determined by ν̄n, a non-random probability measure on Rnh. Another applica-

tion of the chain rule for the relative entropy gives E[R(νn‖η′)] = E
[

1
n

∑n−1
j=0 R(νnj ‖η)

]
.

We can then write Jn(ν̄n) defined in (30) as

Jn(ν̄n) = E

[
R(νn‖η′)−

K∑
k=1

∫ 1

0

ρk

(
Ỹ n(t),

btnc
n

)
H1

(
āk

(
Ỹ n(t),

btnc
n

))
dt

+

K∑
k=1

∫
Rh×[0,1]

ρk

(
Ỹ n(t),

btnc
n

)〈
āk

(
Ỹ n(t),

bntc
n

)
, x
〉
νn(dx× dt) +B(Ỹ n(1))

]
.
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We define a time-continuous version of Jn as

J̄n(ν̄n) = E

[
R(νn‖η′)−

K∑
k=1

∫ 1

0

ρk(Ỹ n(t), t)H1

(
āk(Ỹ n(t), t)

)
dt

+

K∑
k=1

∫
Rh×[0,1]

ρk(Ỹ n(t), t)
〈
āk(Ỹ n(t), t), x

〉
νn(dx× dt) +B(Ỹ n(1))

]
.

We will show

lim inf
n→∞

Jn(ν̄n) = lim inf
n→∞

J̄n(ν̄n) and lim inf
n→∞

J̄n(ν̄n) ≥ W̄ (0, 0). (33)

The theorem is an immediate consequence of the statements in (33). The proofs of
these statements rely on the following lemma, the proof of which is omitted since
it is analogous to (Dupuis and Wang 2007, Lemma A.2 and Lemma A.3).

Lemma 1 Assume that H(a, α) <∞ for all (a, α) ∈ Rh+m, and that (W̄ , ρk, āk)
is a generalized subsolution/control to (25). Consider a subsequence of {ν̄n} along
which Jn(ν̄n) is bounded. Then, relabeling this sequence as {n},

lim
C→∞

sup
n

E

[
1

n

n∑
j=1

(
‖G(X̃n

j )‖1{‖G(X̃n
j )‖>C} + ‖X̃n

j ‖1{‖X̃n
j ‖>C}

)]
= 0, (34)

the sequence {(Ỹ n, νn)} is tight, {Ỹ n(1)} is uniformly integrable and {νn} satis-
fies

lim
C→∞

sup
n

E

[ ∫
Rh×[0,1]

(
‖G(x)‖1{‖G(x)‖≥C} + ‖x‖1{‖x‖≥C}

)
νn(dx× dt)

]
= 0.

(35)
Further suppose that (Ỹ n, νn) → (Ỹ , ν) in distribution. Then ν(dx × dt) can be
factored as ν(dx× dt) = ν(dx|t)dt, with

Ỹ (t) =

∫
[0,t]

∫
Rh
G(x)ν(dx|s)ds, for all t ∈ [0, 1], a.s.. (36)

With this lemma we can now complete the proof of (33). Without loss of gen-
erality we can assume that Jn(ν̄n) is bounded. The uniform boundedness and
Lipschitz continuity of ρk and āk, the continuity of H1 and the uniform integra-
bility of νn in (35) imply limn→∞ |Jn(ν̄n)− J̄n(ν̄n)| = 0. In the remainder of the
proof we show lim infn→∞ J̄n(ν̄n) ≥ W̄ (0, 0) along any such sequence.

Since {(Ỹ n, νn)} is tight along such a subsequence (Lemma 1), by passing
to a further subsequence if necessary we may assume that (Ỹ n, νn) → (Ỹ , ν) in
distribution. Below we consider the limit of each term of J̄n(ν̄n). For its first term,
note that

lim inf
n→∞

E
[
R(νn‖η′)

]
≥ E

[
lim inf
n→∞

R(νn‖η′)
]
≥ E

[
R(ν‖η′)

]
, (37)

where η′ is as introduced in (32) and the first inequality is by Fatou’s Lemma while
the second follows from the lower semi-continuity of the relative entropy. For the
second term in J̄n(ν̄n), using the continuity and boundedness of ρk and āk, and
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the weak convergence of Ỹ n to Ỹ , an application of the dominated convergence
theorem gives

lim
n→∞

E

[
K∑
k=1

∫ 1

0

ρk(Ỹ n(t), t)H1(āk(Ỹ n(t), t))dt

]

= E

[
K∑
k=1

∫ 1

0

ρk(Ỹ (t), t)H1(āk(Ỹ (t), t))dt

]
.

(38)

For the third term, the uniform integrability of νn and continuity and boundedness
of ρk and āk implies

lim
n→∞

E

[
K∑
k=1

∫
Rh×[0,1]

ρk(Ỹ n(t), t)〈āk(Ỹ n(t), t), x〉νn(dx× dt)

]

= E

[
K∑
k=1

∫
Rh×[0,1]

ρk(Ỹ (t), t)〈āk(Ỹ (t), t), x〉ν(dx× dt)

]
.

(39)

For the last term, note that the Lipschitz continuity of W̄ implies B(y) = W̄ (y, 1)
has linear growth. From the uniform integrability of {Ỹ n(1)} in Lemma 1 we then
have that

lim
n→∞

E[B(Ỹ n(1))] = E[B(Ỹ (1))]. (40)

Combining (37), (38), (39), (40), we get a lower bound for lim infn→∞ J̄n(ν̄n) as
given below

E

[
R(ν‖η′)−

K∑
k=1

∫ 1

0

ρk(Ỹ (t), t)H1(āk(Ỹ (t), t))dt

+
K∑
k=1

∫
Rh×[0,1]

ρk(Ỹ (t), t)
〈
āk(Ỹ (t), t), x

〉
ν(dx× dt) +B(Ỹ (1))

]
.

(41)

Next, using the chain rule of the relative entropy and the representation (20), we
have

R(ν‖η′) =

∫ 1

0

R(ν(·|t)‖η)dt ≥
∫ 1

0

L(b(t), β(t))dt,

where b(t) =
∫
Rh xν(dx|t) and β(t) =

∫
Rh G(x)ν(dx|t). From the definition of b(t),∫

Rh×[0,1]

〈
āk(Ỹ (t), t), x

〉
ν(dx× dt) =

∫
[0,1]

〈āk(Ỹ (t), t), b(t)〉dt.

This gives the following lower bound for (41):

E

[∫ 1

0

K∑
k=1

ρk(Ỹ (t), t)
[
L(b(t), β(t))−H1(āk(Ỹ (t), t))+〈āk(Ỹ (t), t), b(t)〉

]
dt+B(Ỹ (1))

]
.

(42)
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By the definition of generalized solutions (see (27)),

W̄t(Ỹ (t), t) + 〈DW̄ (Ỹ (t), t), β(t)〉

=

K∑
k=1

ρk(Ỹ (t), t)
[
rk(Ỹ (t), t) +

〈
sk(Ỹ (t), t), β(t)

〉]
≥−

K∑
k=1

ρk(Ỹ (t), t)
[
L(b(t), β(t))−H1(āk(Ỹ (t), t)) +

〈
āk(Ỹ (t), t), b(t)

〉]
.

From (36) we have β(t) = dỸ (t)/dt for almost every t. Integrating over [0, 1] and
taking expectations, we get

W̄ (0, 0)− E
[
W̄ (Ỹ (1), 1)

]
≤E

[∫ 1

0

∑K
k=1 ρk(Ỹ (t), t)

[
L(b(t), β(t))−H1(āk(Ỹ (t), t)) + 〈āk(Ỹ (t), t), b(t)〉

]
dt
]
.

Since B(Ỹ (1) = W̄ (Ỹ (1), 1), we have shown that W̄ (0, 0) is a lower bound of (42)
and thereby completed the proof of Theorem 1. ut

In practice, one wants to construct a subsolution/control (W̄ , ρk, āk) that has
a simple form and for which the value of W̄ (0, 0) is as large as possible. For this,
we first consider subsolution/control pairs (W̄ , ā), as defined below (27), for which
W̄ is an affine function of (y, t) and ā is in fact a constant. If we write W̄ in the
form

W̄ (y, t) = c̄+ 〈u, y〉 − (1− t)v for some c̄ ∈ R, u ∈ Rm, v ∈ R, (43)

then (W̄ , ā) is a subsolution/control pair if the following holds for all (y, t) ∈
Rm+1:

W̄t(y, t) + inf
(b,β)∈Rh+m

H(DW̄ (y, t), ā, b, β) ≥ 0, (44)

namely

v + inf
(b,β)∈Rh+m

H(u, ā, b, β) ≥ 0. (45)

Next, we select a finite collection of pairs
{

(W̄k, āk), k = 1, . . . ,K
}

from this family

of subsolution/control pairs, such that the point-wise minimum W̄
.
= ∧Kk=1W̄k

defined as W̄ (y, t) = ∧Kk=1W̄k(y, t) = mink=1,··· ,K W̄k(y, t) satisfies

∧Kk=1W̄k(y, 1) ≤ 2F (y) for all y ∈ Rm. (46)

In the process of choosing {(W̄k, āk), k = 1, · · · ,K} we also maximize ∧Kk=1W̄k(0, 0)
among all qualified choices. Finally, we choose a small positive number δ, and de-
fine

W̄ δ(y, t)
.
= −δ log

(
K∑
k=1

e−(1/δ)W̄k(y,t)

)
, (47)

and

ρδk(y, t)
.
=

e−(1/δ)W̄k(y,t)∑K
i=1 e

−(1/δ)W̄i(y,t)
for 1 ≤ k ≤ K. (48)
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Then, following (Dupuis and Wang 2007), we see that (W̄ δ, ρδk, āk) is a subsolu-
tion/control with

∧Kk=1W̄k(y, t) ≥ W̄ δ(y, t) ≥ ∧Kk=1W̄k(y, t)− δ logK for all (y, t).

In particular, the difference between W̄ δ(0, 0) and ∧Kk=1W̄k(0, 0) is not larger than
δ logK. Thus the estimator Zn based on this generalized subsolution/control sat-
isfies

lim inf
n→∞

{
− 1

n
logE

[
(Zn)2

]}
≥ W̄ δ(0, 0) ≥ W̄ (0, 0)− δ logK. (49)

In Section 5 we illustrate the implementation of such a construction for some
examples.

3 Analysis of some approximate problems

It is possible for the objective function of (1) to be differentiable even if F is not
differentiable everywhere. However, the gradient of the objective function is not
given by the expectation of the gradient of the function inside the expectation
w.r.t. θ, unless additional conditions hold (see, e.g., (Shapiro et al. 2009, Theorem
7.49)). Those conditions are not satisfied with F (y) =∞1Ac(y), the main problem
we are interested in. To use a gradient based optimization algorithm to solve (1),
we approximate F by a continuous function ϕ : Rm → R, and use a solution to
the problem

min
θ∈Θ

p(θ) = E exp

{
−nϕ

(
1

n

n∑
i=1

G(Xi, θ)

)}
(50)

as an estimate for the solution of (1).
Next, we consider the problem (50) with a fixed continuous function ϕ, and

study its convergence as n → ∞. While our main interest is in solving (1) or its
approximation (50) for a fixed n, this convergence ensures stability of the solution
of (50) as n increases, and can be used in computation to find an initial point for
solving (50). For this purpose, we define functions gn : Θ → R and g : Θ → R as

gn(θ) = − 1

n
logE exp

{
−nϕ

(
1

n

n∑
i=1

G(Xi, θ)

)}
, (51)

and

g(θ) = inf
ν∈P(Rh)

{
ϕ

(∫
Rh
G(x, θ)ν(dx)

)
+R(ν||η)

}
. (52)

Clearly, (50) is equivalent to

max
θ∈Θ

gn(θ). (53)

Theorem 2 below shows that gn converges to g uniformly under suitable conditions,
which implies the convergence of solutions of (53) to that of the limiting problem:

max
θ∈Θ

g(θ). (54)
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Let Hθ
2 denote the log moment generating function of G(X1, θ), namely,

Hθ
2 (α) = logE e〈α,G(X1,θ)〉, α ∈ Rm. (55)

Also, let Lθ2 denote the Legendre transform of Hθ
2 , i.e.,

Lθ2(β) = sup
α∈Rm

(
〈α, β〉 −Hθ

2 (α)
)
, β ∈ Rm. (56)

Theorem 2 Let Θ be a compact subset of Rd. Assume that supθ∈ΘH
θ
2 (α) < ∞

for all α ∈ Rm. If ϕ is continuous and bounded, then gn → g uniformly on Θ.

Proof Let {Xi}i∈N be i.i.d. random variables with distribution η, and let Ln be

the empirical measure in Rh that puts mass 1/n at each of the first n points
X1, · · · , Xn, namely Ln(dx) = 1

n

∑n
i=1 δXi(dx). From the representation estab-

lished in (Dupuis and Ellis 2011, Section 2.3), for θ ∈ Θ, we have

gn(θ) = inf
ν̄n

E

[
ϕ

(∫
Rh
G(x, θ)L̄n(dx)

)
+

1

n

n∑
i=1

R(ν̄ni ‖η)

]
, (57)

where the infimum is over all probability distributions ν̄n ∈P(Rnh), with (X̄n
1 , · · · ,

X̄n
n ) being a random variable with distribution ν̄n, L̄n being the empirical mea-

sure in Rh of the n points X̄n
1 , · · · , X̄n

n , and ν̄ni being the conditional distribution
of X̄n

i given X̄n
1 , · · · , X̄n

i−1. Since ϕ is bounded, the infimum in (57) is bounded
above by ‖ϕ‖∞ = supy∈Rm | ϕ(y)| < ∞. It follows that for any fixed value of
n ∈ N, in taking the infimum in (57) we can restrict to distributions ν̄n for which

E

[
1

n

n∑
i=1

R(ν̄ni ‖η)

]
≤ 2‖ϕ‖∞ + 1. (58)

Under our assumption supθH
θ
2 (α) < ∞, by a standard argument (see, e.g. the

proof of Lemma 1), for any sequence {ν̄n}n∈N that satisfies (58) for all n we see
that

lim
C→∞

sup
n∈N

sup
θ∈Θ

E
[∫

Rh
‖G(x, θ)‖1{‖G(x,θ)‖≥C}L̄n(dx)

]
= 0. (59)

Now let {θn} ⊂ Θ such that θn → θ as n→∞. Fix ε > 0 and let {ν̄n} satisfy

− 1

n
logE

[
e−nϕ(

∫
Rh G(x,θn)Ln(dx))

]
+ ε

≥E

[
ϕ

(∫
Rh
G(x, θn)L̄n(dx)

)
+

1

n

n∑
i=1

R(ν̄ni ‖η)

]
,

as well as (58) for each n, and define ν̂n
.
= 1

n

∑n
i=1 ν̄

n
i . Using arguments similar

to (Dupuis and Ellis 2011, Proposition 8.2.5 and Lemma 8.2.7), {(L̄n, ν̂n)}n∈N is
tight. Consider a subsequence along which (L̄n, ν̂n) converges weakly to (L̄, ν̂).
Then it is easy to check that

lim
n→∞

E
[
ϕ

(∫
Rh
G(x, θn)L̄n(dx)

)]
= E

[
ϕ

(∫
Rh
G(x, θ)L̄(dx)

)]
. (60)
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Consequently, we have

lim inf
n→∞

gn(θn) + ε = lim inf
n→∞

{
− 1

n
logE exp

{
−nϕ

(∫
Rh
G(x, θn)Ln(dx)

)}}
+ ε

≥ lim inf
n→∞

E

[
ϕ

(∫
Rh
G(x, θn)L̄n(dx)

)
+

1

n

n∑
i=1

R(ν̄ni ‖η)

]
≥ lim inf

n→∞
E
[
ϕ

(∫
Rh
G(x, θn)L̄n(dx)

)
+R(ν̂n‖η)

]
≥ E

[
ϕ

(∫
Rh
G(x, θ)L̄(dx)

)
+R(ν̂‖η)

]
≥ inf
ν∈P(Rh)

[
ϕ

(∫
Rh
G(x, θ)ν(dx)

)
+R(ν‖η)

]
= g(θ),

where the second inequality holds by Jensen’s inequality and convexity of relative
entropy, the third inequality follows from the convergence in distribution, Fatou’s
Lemma and lower semicontinuity of relative entropy, and the fourth inequality
follows from the fact that L̄ = ν̂ a.s., see (Dupuis and Ellis 2011, Theorem 8.2.8).
Since ε > 0 is arbitrary, we have lim inf gn(θn) ≥ g(θ).

We now consider the reverse inequality. Once more, let θn → θ. We first argue
that g(θn)→ g(θ). Note that, for θ ∈ Θ

g(θ) = inf
ν∈P(Rh)

[
ϕ

(∫
Rh
G(x, θ)ν(dx)

)
+R(ν‖η)

]
= inf
ν∈P(Rh):R(ν‖η)≤‖ϕ‖∞

[
ϕ

(∫
Rh
G(x, θ)ν(dx)

)
+R(ν‖η)

]
.

Fix ε > 0 and let νn, ν0 be ε-optimal for g(θn) and g(θ), respectively, and such
that R(νn‖η) ≤ ‖ϕ‖∞, R(ν0‖η) ≤ ‖ϕ‖∞. Then the sequence {νn} is tight and in
a similar manner as for the proof of (59), we have

lim
C→∞

sup
n≥0

sup
θ∈Θ

∫
Rh
‖G(x, θ)‖1{‖G(x,θ)‖≥C}ν

n(dx) = 0. (61)

In particular, as n→∞, it holds that∣∣∣∣ϕ(∫
Rh
G(x, θn)νn(dx)

)
− ϕ

(∫
Rh
G(x, θ)νn(dx)

)∣∣∣∣→ 0, (62)

and ∣∣∣∣ϕ(∫
Rh
G(x, θn)ν0(dx)

)
− ϕ

(∫
Rh

G(x, θ)ν0(dx)

)∣∣∣∣→ 0. (63)

From the ε-optimality of νn, we have

lim sup
n→∞

(g(θ)− g(θn))≤ lim sup
n→∞

[
ϕ
(∫

RhG(x, θ)νn(dx)
)
− ϕ

(∫
RhG(x, θn)νn(dx)

)]
+ ε

≤ ε,

where the second inequality follows from (62). Similarly, using (63), we can see
that lim supn→∞(g(θn)− g(θ)) ≤ ε. Since ε > 0 is arbitrary, we have shown that

g(θn)→ g(θ) as n→∞. (64)
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Next, with ε, νn as above, define L̄n as the empirical measure of
{
X̄n
i

}n
i=1

which

are i.i.d. νn. Using (61) it can be seen that the sequence {L̄n} satisfies (59).
Also, for every bounded G̃ : Θ × Rh → R, as n → ∞,

∫
Rh G̃(x, θn)L̄n(dx) −∫

Rh G̃(x, θn)νn(dx) → 0, in probability. Combining these two observations with
the fact that ϕ is continuous and bounded, we have that, as n→∞,

δn
.
=

∣∣∣∣E [ϕ(∫
Rh
G(x, θn)L̄n(dx)

)]
− ϕ

(∫
Rh
G(x, θn)νn(dx)

)∣∣∣∣→ 0. (65)

Finally, from the representation in (57),

lim sup
n→∞

gn(θn) ≤ lim sup
n→∞

E

[
ϕ

(∫
Rh
G(x, θn)L̄n(dx)

)
+

1

n

n∑
i=1

R(ν̄ni ‖η)

]
≤ lim sup

n→∞

(
E
[
ϕ

(∫
Rh
G(x, θn)νn(dx)

)
+R(νn‖η)

]
+ δn

)
≤ lim sup

n→∞
g(θn) + ε = g(θ) + ε,

where the second inequality uses the fact that ν̄ni = νn for each i, and the third
inequality uses (65) and the ε-optimality of νn. Since ε is arbitrary, we have proved
lim supn→∞ gn(θn) ≤ g(θ). This completes the proof. ut

As an immediate consequence of the above theorem we have the following corollary.
For a function ψ : Θ → R and δ ∈ (0,∞) we say a θ∗ ∈ Θ satisfies θ∗ ∈ δ −
argmaxθ∈Θ ψ if ψ(θ∗) ≥ supθ∈Θ ψ(θ)− δ.

Corollary 1 Suppose the assumptions in Theorem 2 hold. Then, maxθ∈Θ g
n(θ)

converges to maxθ∈Θ g(θ), and for any choice of δn ↓ 0 and θn ∈ δn− argmaxθ∈Θ
gn, all cluster points of the sequence {θn}n∈N belong to argmaxθ∈Θ g. If argmaxθ∈Θ
g consists of a unique point θ∗, one must actually have θn → θ∗.

4 Minimization of the buffered failure probability

In this section, we consider the special case in which F (y) = δA(y), m = 1 and
A = [0,∞). In such a setting, an alternative reliability measure known as the
buffered failure probability or the buffered probability of exceedance (abbrevi-
ated as the buffered probability in the rest of the paper) can be used in place of
the standard probability. The buffered probability was introduced in (Rockafellar
and Royset 2010), which also showed how to convert optimization problems with
buffered probability constraints into convex programs using a result in (Rockafellar
and Uryasev 2000). An extension and more properties of the buffered probabil-
ity were provided in (Mafusalov and Uryasev 2014). In general, for a continuous
1-dimensional random variable X, and a scalar c ∈ (E [X] , ess supX) (ess supX
is the essential supremum of X), the buffered probability is defined as p̄c(X) =
P (X > q), where q is the unique solution to the equation E [X | X > q] = c; in
addition, we define p̄c(X) = 0 for c ≥ ess supX and p̄c(X) = 1 for c ≤ E [X].
For a detailed discussion and the definition that applies to a general distribu-
tion, see (Mafusalov and Uryasev 2014). A direct consequence of the above def-
inition is that q ≤ c and P (X > c) ≤ p̄c(X). It was shown in (Mafusalov and
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Uryasev 2014) that the buffered probability can be equivalently represented as
p̄c(X) = minλ≥0 E [λ(X − c) + 1]+ 1{ess supX>c}.

The following theorem gives an important connection between buffered prob-
abilities and the large deviations rate function. Specifically, it shows that, under
conditions, when X is replaced by the the sample mean of i.i.d. random variables,
the buffered probability and the corresponding ordinary probability have the same
asymptotic decay rate.

Theorem 3 Let Ui, i ≥ 1 be an i.i.d. sequence of R-valued random variables, and
suppose that M(λ)

.
= E

[
eλU1

]
< ∞ for every λ ∈ R. Let H(λ)

.
= logM(λ) for

λ ∈ R and L be the Legendre transform of H, and suppose that L is finite on
(0,∞). Write Yn

.
= 1

n

∑n
i=1 Ui for n ≥ 1. Then for every c > E [U1] and γ ≥ 0,

one has

lim
n→∞

1

n
log min

λ≥γ
E[λ(Yn − c) + 1]+ = lim

n→∞

1

n
log P[Yn > c] = −L(c).

Proof Without loss of generality we assume that E(U1) = 0. Fix c > 0. Since
for λ = 0, logE [λ(X − c) + 1]+ = 0 and L(c) ≥ 0, it suffices to prove the result
with the minimization over {λ : λ > γ} for every γ ≥ 0. Note that under the

assumptions of the theorem, for every κ > 0, we have lim inf
n→∞

1

n
log P (Yn > κ) =

lim sup
n→∞

1

n
log P (Yn ≥ κ) = −L(κ). For λ > 0

E [λ(Yn − c) + 1]+ ≥ E
[
[λ(Yn − c) + 1]1{Yn>c}

]
≥ P(Yn > c).

Thus, for any γ ≥ 0, 1
n log minλ>γ E [λ(Yn − c) + 1]+ ≥ 1

n log P (Yn > c). Taking
limit as n→∞, we have

lim inf
n→∞

1

n
log min

λ>γ
E [λ(Yn − c) + 1]+ ≥ lim inf

n→∞

1

n
log P (Yn > c) = −L(c).

Now we prove the complementary inequality. Choose m ≥ 1 such that L(c+m) >
L(c) + 1. Note that for λ > 0

E [λ(Yn− c) + 1]+

=E
[
[λ(Yn− c) + 1]1{c− 1

λ
≤Yn≤c+m}

]
+ E

[
[λ(Yn − c) + 1]1{Yn>c+m}

]
.

Let α∗0 ∈ R be the dual point to (c+m), namely

L(c+m) = sup
α∈R

[α(c+m)−H(α)] = α∗0(c+m)−H(α∗0). (66)

Existence of the dual point is guaranteed under the assumptions here, by (Ellis
2007, Theorems VIII.4.3 and VIII.4.4). Note that α∗0 > 0, by Jensen’s inequality,
H(α∗0) ≥ log(eα

∗
0E(U1)) = 0. Given λ > 0, choose n(λ) such that for all n ≥ n(λ),

γn
.
= α∗0 − λ

n > 0. Then, for such n,

E
[
[λ(Yn − c) + 1]1{Yn>c+m}

]
≤ e−λc−nγn(c+m)E

[
e(λ+nγn)Yn

]
= enH(γn+λ/n)e−λc−nγn(c+m)

= enH(α∗0)e−nα
∗
0(c+m)eλm = e−nL(c+m)+λm.

(67)
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Thus 1
n logE

[
[λ(Yn − c) + 1]1{Yn>c+m}

]
≤ −L(c +m) + λm

n ≤ −L(c)− 1 + λm
n .

Also, for λ > 0, it holds that

1

n
logE

[
[λ(Yn − c) + 1]1{c−1/λ≤Yn≤c+m}

]
≤ 1

n
log P (Yn ≥ c− 1/λ) +

log(mλ+ 1)

n
.

We now have that for all n ≥ n(λ),

1
n logE [λ(Yn − c) + 1]+

≤ log 2
n + max

{
−L(c)− 1 + λm

n , log(mλ+1)
n + 1

n log P
(
Yn ≥ c− 1

λ

)}
.

Fix ε > 0 and let δ0 ∈ (0, γ−1 ∧ c), n0 ∈ N, be such that for all n ≥ n0,
1
n log P (Yn ≥ c−δ0) ≤ −L(c) + ε. Let λ0 = δ−1

0 and n1 = n0 ∨ n(λ0). Then,
for n ≥ n1

min
λ>γ

1

n
logE[λ(Yn−c) + 1]+

≤ 1

n
logE[λ0(Yn − c) + 1]+

≤ log 2

n
+ max

{
−L(c)− 1 +

λ0m

n
,

log(mλ0 + 1)

n
+ ε− L(c)

}
.

Now, choose n2 ≥ n1 s.t. for all n ≥ n2, λ0m/n < 1. Then, for all n ≥ n2, we
have

max

{
−L(c)− 1+

λ0m

n
,

log(mλ0 + 1)

n
+ε− L(c)

}
=

log(mλ0 + 1)

n
+ε− L(c).

Thus for all n ≥ n2,

min
λ>γ

1

n
logE[λ(Yn − c) + 1]+ ≤ log(mλ0 + 1)

n
+ ε− L(c) +

log 2

n
.

Since ε > 0 is arbitrary, we have the desired inequality on sending n → ∞ and
ε→ 0. ut

The above theorem suggests that the change of measure that is asymptot-
ically optimal for IS Monte-Carlo for estimating P (Yn > c) may be useful for
Monte-Carlo estimation of minλ>α

1
n logE [λ(Yn − c) + 1]+ as well. Recall that

the asymptotically optimal probability measure for IS for estimating P (Yn > c)
with {Yn} as in Theorem 3 is given as να∗(dz)

.
= eα

∗z−H(α∗)ξ(dz), where ξ is the
probability distribution of U1 and α∗ is the conjugate dual of c, namely

L(c) = sup
α∈R

[αc−H(α)] = α∗c−H(α∗). (68)

We will now show that this change of measure is nearly asymptotically optimal
for IS estimation of 1

n logE [λ(Yn − c) + 1]+ for large values of λ. Note that by an
elementary application of Jensen’s inequality, if Tn(λ) is any unbiased estimate of
E [λ(Yn − c) + 1]+, then for any λ > 0,

lim inf
n→∞

1

n
logE

[
T 2
n(λ)

]
≥ 2 lim inf

n→∞

1

n
logE [λ(Yn − c) + 1]+

≥ 2 lim inf
n→∞

min
λ′>0

1

n
logE

[
λ′(Yn − c) + 1

]+
= −2L(c).
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The following result shows that this lower asymptotic bound is nearly achieved
when the estimator Tn(λ) is constructed using the change of measure να∗ and λ
is large. The second moment of this estimator is given as

Rn(λ) = E
[(

[λ(Yn − c) + 1]+
)2
e−nα

∗Yn+nH(α∗)

]
.

Theorem 4 Suppose that the conditions of Theorem 3 are satisfied. Then for
every ε > 0, there exists a γ > 0 such that

sup
λ≥γ

lim sup
n→∞

1

n
logRn(λ) ≤ −2L(c) + ε.

Proof Without loss of generality, assume that E(U1) = 0 and fix c > 0. For any
λ > 0

1
n logRn(λ) = 1

n logE
[(

[λ(Yn − c) + 1]+
)2
e−nα

∗Yn+nH(α∗)
]

= H(α∗) + 1
n logE

[(
[λ(Yn − c) + 1]+

)2
e−nα

∗Yn
]

= −L(c) + α∗c+ 1
n logE

[(
[λ(Yn − c) + 1]+

)2
e−nα

∗Yn
]
.

(69)

Choose m ≥ 1 such that L(c+m) ≥ L(c) + α∗c+ 1. Then, for λ > 0, we have

E
[(

[λ(Yn−c) + 1]+
)2
e−nα

∗Yn

]
=E

[(
[λ(Yn − c) + 1]+

)2
e−nα

∗Yn1{c−1/λ≤Yn≤c+m}

]
+ E

[(
[λ(Yn − c) + 1]+

)2
e−nα

∗Yn1{Yn>c+m}

]
.

For the second term on the right side we have with γn as in Theorem 3,

E
[(

[λ(Yn − c) + 1]+
)2
e−nα

∗Yn1{Yn>c+m}

]
≤ 4E

[(
1 + (λ(Yn−c))2

2

)
1{Yn>c+m}

]
≤ 4E

[
eλ(Yn−c)enγn(Yn−c−m)

]
,

where the first inequality is a consequence of (1 + x)2 ≤ 4(1 + x2

2 ) and α∗ ≥ 0.
Therefore, from (67), for all n ≥ n(λ), where n(λ) is as in Theorem 3,

1

n
logE

[(
[λ(Yn − c) + 1]+

)2
e−nα

∗Yn1{Yn>c}

]
≤− L(c+m) +

λm

n
+

log 4

n

≤− L(c)− α∗c− 1 +
λm

n
+

log 4

n
.

Next,

1

n
logE

[(
[λ(Yn − c) + 1]+

)2
e−nα

∗Yn1{c− 1
λ
≤Yn≤c+m}

]
≤− α∗(c− 1

λ
) +

2 log(1 +mλ)

n
+

1

n
log P

(
Yn > c− 1

λ

)
.
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Therefore, for all n ≥ n(λ),

1

n
logE

[(
[λ(Yn − c)+1]+

)2
e−nα

∗Yn

]
≤ log 2

n
+ max

{
− L(c)− α∗c− 1 +

λm+ log 4

n
,

− α∗(c− 1

λ
) +

1

n
log P

(
Yn > c− 1

λ

)
+

2 log(1 +mλ)

n

}
.

Fix ε > 0 and let 0 < δ0 ≤ c and n0 ∈ N be such that for all n ≥ n0, we have
1
n log P (Yn ≥ c− δ0) ≤ −L(c) + ε

2 . Then, for all n ≥ n0 and δ < δ0,

1

n
log P (Yn ≥ c− δ) ≤

1

n
log P (Yn ≥ c− δ0) ≤ −L(c) +

ε

2
.

Let γ
.
= max

{
1
δ0
, 2α∗

ε

}
. Then for every λ ≥ γ and n ≥ max {n0, n(λ)}, we have

1
n log E

[(
[λ(Yn − c) + 1]+

)2
e−nα

∗Yn
]
≤ log 2

n

+ max
{
−L(c)− α∗c− 1 + λm+log 4

n ,−L(c)− α∗c+ ε+ 2 log(1+mλ)
n

}
.

Choose n1 ≥ n0 such that λm+log 4
n1

< 1. Then for n ≥ max{n1, n(λ)} the

maximum on the right side equals −L(c) − α∗c + ε + 2
n log(1 + mλ). Combin-

ing the above with (69), for every λ ≥ γ, one has lim supn→∞
1
n logRn(λ) ≤

−L(c) + α∗c− L(c)− α∗c+ ε = −2L(c) + ε. The result follows. ut

We now return to our main optimization problem. Replacing the probabil-
ity in (2) with the corresponding buffered probability for the random variable
Yn = 1

n

∑n
i=1G(Xi, θ), and assuming c = 0 < ess supYn, we obtain the following

problem:

inf
λ≥0,θ∈Θ

E

[
λ

(
1

n

n∑
i=1

G(Xi, θ)− c

)
+ 1

]+

. (70)

As discussed below Theorem 5, the above optimization problem has some appeal-
ing features. We now present a result that makes connections between a change of
measure used for solving the minimization problem in (2) and the minimization
problem for the corresponding buffered probability, namely the problem in (70).
For this result we recall the definition of a subsolution of (25) and the associated
generalized subsolution/control, given in Subsection 2.2. We will use the notation
and setting of Subsection 2.2 but here m = 1 and F (y) = ∞1(−∞,c](y). The fol-
lowing is the main theorem which gives the same lower bound on the exponential
decay rate of the second moment of the estimator for E [λ(Yn − c) + 1]+ as was
obtained in Theorem 1.

Theorem 5 Let c > 0. Assume that H(a, α) <∞ for all (a, α) ∈ Rn+1, and that
(W̄ , {ρk, āk}Kk=1) is a generalized subsolution/control to (25) with W̄ (y, 1) < 0 for
all y ≥ c. Let

{
X̄n
j

}
1≤j≤n and

{
Ȳ nj
}

0≤j≤n be as defined above Theorem 1. For

λ > 0, define Zn(λ)
.
= [λ(Ȳ nn − c) + 1]+Ῡn, where

Ῡn
.
=

n−1∏
j=0

[
K∑
k=1

ρk(Ȳ nj ,
j
n )e〈āk(Ȳ nj ,

j
n

),X̄n
j+1〉−H1(āk(Ȳ nj ,

j
n

))

]−1

.
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Then, Zn(λ) is unbiased for E [λ(Yn − c) + 1]+ and there exists γ > 0 s.t.

sup
λ≥γ

lim sup
n→∞

1

n
logE

[
(Zn(λ))2

]
≤ −W̄ (0, 0).

Proof The unbiasedness of Zn(λ) is easy to check. Consider now V n(λ)
.
= E[(Zn(λ))2].

Let m ≥ 1. Then with

Υn
.
=

n−1∏
j=0

[
K∑
k=1

ρk(Y nj ,
j
n )e〈āk(Y nj ,

j
n

),Xn
j+1〉−H1(āk(Y nj ,

j
n

))

]−1

,

we have
V n(λ) = E

(
([λ(Yn − c) + 1]+)2Υn1{Yn≥c−1/λ}

)
= E

(
([λ(Yn − c) + 1]+)2Υn1{c−1/λ≤Yn≤c+m}

)
+ E

(
([λ(Yn − c) + 1]+)2Υn1{Yn>c+m}

)
.

(71)

For the second term on the last line, we have by the Cauchy-Schwarz inequality[
E
(

([λ(Yn − c) + 1]+)2Υn1{Yn>c+m}

)]2
≤E

(
([λ(Yn − c) + 1]+)41{Yn>c+m}

)
E (Υn)2 .

By Jensen’s inequality

0 ≤ Υn ≤ Υ̃n .
=

n−1∏
j=0

exp

{
K∑
k=1

ρk(Y nj ,
j
n )(〈āk(Y nj ,

j
n ), Xn

j+1〉 −H1(āk(Y nj ,
j
n )))

}
.

From this, the boundedness of ρk and āk, and our assumption on the finiteness

of H, we have for some c1 < ∞ that
[
E (Υn)2]1/2 ≤ enc1 for all n ≥ 1. Also, for

some c2 <∞

E
(

([λ(Yn − c) + 1]+)41{Yn>c+m}

)
≤ c2E

(
eλ(Yn−c)enγn(Yn−c−m)

)
,

where γn is as introduced above (67). The same calculation as in (67) now shows
that

1

n
log
[
E
(

([λ(Yn − c) + 1]+)41{Yn>c+m}

)]1/2
≤ −L(c+m)

2
+
λm+ log c2

2n
.

Thus

1

n
logE

(
([λ(Yn − c) + 1]+)2Υn1{Yn>c+m}

)
≤ −L(c+m)

2
+ c1 +

λm+ log c2
2n

.

Now fix m ≥ 1 such that L(c+m)/2 ≥ W̄ (0, 0) + 1 + c1. Consider the first term
on the right side of (71). We have

E
(

([λ(Yn − c) + 1]+)2Υn1{c−1/λ≤Yn≤c+m}

)
≤ (λm+ 1)2E

(
Υ̃n1{Yn≥c−1/λ}

)
.

Choose γ large enough so that W̄ (y, 1) ≤ 0 for y ≥ c−1/γ. Then with B as in the
proof of Theorem 1 we have 1{Yn≥c−1/λ} ≤ e−nB(Yn) for λ ≥ γ. Thus we have

1

n
logE

(
([λ(Yn − c) + 1]+)2Υn1{c−1/λ≤Yn≤c+m}

)
≤ 2 log(λm+ 1)

n
+

1

n
log Ṽ n,
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where Ṽ n is as in the proof of Theorem 1. Choose n1 ∈ N such that (λm+log c2)
2n1

< 1.
Thus for all λ ≥ γ and n ≥ n1

1

n
log V n(λ) ≤ log 2

n
+ max

{
2 log(λm+ 1)

n
+

1

n
log Ṽ n,−W̄ (0, 0)

}
.

Taking limit as n → ∞, we now have from the proof of Theorem 1 that for all
λ ≥ γ, lim supn→∞

1
n log V n(λ) ≤ −W̄ (0, 0). The result follows. ut

Suppose that c = 0 < ess supYn and suppose further that G(x, θ) can be
decomposed as G(x, θ) = G1(x, θ) + G2(x), where G1 is positively homogeneous,
i.e., G1(λx, λθ) = λG1(x, θ) for λ ≥ 0. Then (70) can be rewritten as

inf
λ≥0,θ∈Θ

E

[
λ

n

n∑
i=1

G1(Xi, θ) +
λ

n

n∑
i=1

G2(Xi) + 1

]+

= inf
λ≥0,θ̄∈λΘ

E

[
1

n

n∑
i=1

G1(λXi, θ̄) +
λ

n

n∑
i=1

G2(Xi) + 1

]+

.

(72)

If Θ is a convex set and G1 is convex in (x, θ), the above minimization is a convex
problem with variables λ and θ̄, and thus can be solved with well studied methods
such as the gradient (sub)descent method, as shown in Example 3 in Section 5.

5 Computational experiments

We consider problems of the form (2) with A = Rm+ and Θ a compact, convex set,
and approximate those problems by (50) in which ϕ : Rm → R is defined as

ϕ(y) = Λmin(‖min(y, 0)‖22, ε2), y ∈ Rm, (73)

with ε > 0 and Λ > 0 being fixed parameters. The function ϕ is bounded and
Lipschitz continuous, and can be written as the point-wise minimum ϕ1 ∧ ϕ2 of
the constant function ϕ1(y) ≡ Λε2 and ϕ2(y) = Λ ‖min(y, 0)‖22.

As noted below (52), the problem (50) is equivalent to (53), which converges
to the limiting problem (54) as n → ∞ as shown in Corollary 1. In view of this
convergence, we first solve (54) for which no use of IS is needed, and then use its
solution as the initial point to solve (53) with a gradient based method in which the
function and gradient values are computed using IS. For problems with m = 1 we
also solve the buffered probability problem (72) and compare its solution with that
of (53). Subsection 5.1 below discusses a reformulation of (54) and its properties,
Subsection 5.2 gives details on implementing IS in solving (53), and Subsection 5.3
summarizes results from numerical examples.

5.1 Reformulation of the limiting problem

To solve (54), we reformulate it as a constrained optimization problem. As before
we assume that Hθ

2 (α) < ∞ for all θ ∈ Θ and α ∈ Rm. Note that Lθ2(β) ≥ 0 for
all β ∈ Rm and θ ∈ Θ. Suppose also

sup
θ∈Θ

inf
β≥0

Lθ2(β) <∞. (74)
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Then, by choosing the parameters Λ and ε in the definition of ϕ in (73) to satisfy
Λε2 ≥ supθ∈Θ infβ≥0 L

θ
2(β), for each θ ∈ Θ and β ∈ Rm, we have

ϕ1(β) + Lθ2(β) ≥ Λε2 ≥ inf
β′≥0

Lθ2(β′) = inf
β′≥0

(Lθ2(β′) + ϕ2(β′)), (75)

where the first inequality holds because ϕ1 ≡ Λε2 and Lθ2(β) ≥ 0, and the last
equality holds because ϕ2(β) = 0 for β ≥ 0. Consequently, for any θ ∈ Θ we have

g(θ) = infβ∈Rm(ϕ(β) + Lθ2(β)) = infβ∈Rm(ϕ2(β) + Lθ2(β))

= infβ∈Rm supα∈Rm
[
ϕ2(β) + 〈α, β〉 − logEe〈α,G(X1,θ)〉

]
,

(76)

where the first equality follows from Cramér’s Theorem, and the second is from
(75).

For each θ ∈ Θ define a function Φθ : Rm × Rm → R as

Φθ(α, β) = ϕ2(β) + 〈α, β〉 − logEe〈α,G(X1,θ)〉. (77)

Clearly, Φθ is continuous, convex with respect to β and concave with respect to
α. The following proposition gives the existence of saddle-points of Φθ. We use
Sθ ⊂ Rm to denote the support of the random variable G(X1, θ), i.e. the smallest
closed set in Rm such that P(G(X1, θ) ∈ Sθ) = 1, and denote the closed convex
hull of Sθ as ccSθ.

Proposition 1 Suppose that ccSθ has a nonempty interior. Then, for each θ ∈ Θ,
the set of saddle points of Φθ is nonempty and compact.

Proof Fix θ ∈ Θ. By (Bertsekas 2009, Proposition 5.5.7), it suffices to show that
for some ᾱ ∈ Rm, β̄ ∈ Rm and γ̄ ∈ R, the following sets

{α ∈ Rm | Φθ(α, β̄) ≥ γ̄} and {β ∈ Rm | Φθ(ᾱ, β) ≤ γ̄} (78)

are nonempty and compact.

First, choose ᾱ > 0, and we show that the level sets of Φθ(ᾱ, ·) (namely sets
of the form {β ∈ Rm | Φθ(ᾱ, β) ≤ γ̄} for γ̄ ∈ R) are compact. It is not hard
to check that the recession function of Φθ(ᾱ, ·) evaluated at a direction d ∈ Rm
takes the value of 〈ᾱ, d〉 for d ≥ 0 and ∞ for all other d. The recession function is
nonpositive only at d = 0. By (Bertsekas 2009, Propositions 1.4.5-1.4.6), all level
sets of Φθ(ᾱ, ·) are compact.

Second, choose β̄ from the interior of ccSθ; then 0 belongs to the interior of
cc(Sθ − β̄), where Sθ − β̄ is the support of the random variable G(X1, θ)− β̄. As
shown in the proof of (Ellis 2007, Theorem VIII.4.3), the level sets of the log-
moment generating function of G(X1, θ) − β̄ are all compact, which are exactly
sets of the form {α ∈ Rm | Φθ(α, β̄) ≥ γ̄}. We have thus shown that the sets (78)
are compact for all γ̄ ∈ R. By choosing γ̄ to be sufficiently large, these sets are
also nonempty. ut
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When saddle points of Φθ exist, they provide solutions to the outer minimiza-
tion and inner maximization problems of infβ supα Φ

θ(α, β). When Φθ is differen-
tiable, saddle points of Φθ can be further characterized by points where the partial
derivatives vanish, so (54) can be written as

max
θ∈Θ,α∈Rm,β∈Rm

Φθ(α, β) = ϕ2(β) + 〈α, β〉 − logEe〈α,G(X1,θ)〉

s.t. E[e〈α,G(X1,θ)〉]β = E[G(X1, θ)e
〈α,G(X1,θ)〉],

2Λmin(β, 0) + α = 0.

With the equality constraints the above problem is nonconvex, but it has a fa-
vorable feature that evaluating the expected values in the objective function and
the constraints does not necessitate the use of IS. In our numerical examples, we
solve the problem by replacing the expected values by a numerical quadrature, or
a sample average approximation when the latter is not available.

5.2 Implementing IS in the gradient method

In the numerical examples, Xi follows a normal distribution and the function
G(x, θ) is piecewise linear in (x, θ). Using (Shapiro et al. 2009, Theorem 7.49), the
gradient of gn is

Ogn(θ) =
E
[
exp

{
−nϕ

(
1
n

∑n
i=1G(Xi, θ)

)}
Oθ
[
ϕ( 1

n

∑n
i=1G(Xi, θ))

]]
E
[
exp

{
−nϕ

(
1
n

∑n
i=1G(Xi, θ)

)}] . (79)

For given θ ∈ Θ, let Ôgn(θ) be an SAA estimator for Ogn(θ). The gradient ascent
update at the lth step is given by θl+1 = ΠΘ(θl + olÔg

n(θl)), where ol is the step
size and ΠΘ is the projection operator onto the set Θ. The algorithm stops when
the distance from −Ôgn(θl) to the normal cone to Θ at θl, is less than a threshold
∆.

Because the denominator of (79) is in the form of (3), with ϕ and G(·, θ) play-
ing roles of F and G(·) respectively, we can follow the procedures in Section 2 to
estimate it using IS. Although the IS methods give guaranteed asymptotic perfor-
mance bounds only for estimators of the denominator in (79), for our numerical
studies we use the same change of measure to estimate the numerator as well.
As discussed in Section 2, there are two approaches depending on whether Xi or
Ui = G(Xi, θ) is used for the change of measure. Below we outline the implemen-
tation for both approaches.

Change of measure on Xi To implement IS based on a change of measure on
Xi, we follow the procedure outlined below Theorem 1 to construct a generalized
subsolution/control. We select {(W̄k, āk)}k=1,2 from the family of affine subsolu-
tion/control pairs (W̄ , ā), where W̄ is of the form (43) and ā satisfies (45). We
impose the requirements W̄1(y, 1) ≤ 2φ1(y) and W̄2(y, 1) ≤ 2φ2(y) for all y ∈ Rm,
to guarantee (46) holds with ϕ in place of F . Since ϕ1(y) ≡ Λε2, we simply let
W̄1(y, t) ≡ 2Λε2; it can be verified that ā1 = 0 satisfies (45). The coefficients
for W̄2 and the corresponding ā2 are determined by the following optimization
problem:

max
ā2,c̄,u

{
c̄−H(−ā2,−u)−H1(ā2) s.t. u ≤ 0, c̄ ≤ 0, c̄+

uTu

8Λ
≤ 0

}
.
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The constraints arise from the requirement W̄2(y, 1) ≤ 2φ2(y) for all y and the
objective function reflects our aim to maximize W̄2(0, 0) while satisfying (44) W̄
replaced with W̄2. After solving the above optimization problem, we define W̄2 as

W̄2(y, t) = c̄+ 〈u, y〉 − (1− t)
(
H(−ā2,−u) +H1(ā2)

)
.

It is easy to check (W̄2, ā2) is a subsolution/control pair. With
{

(W̄k, āk)
}
k=1,2

obtained, we next construct a generalized subsolution/control by defining W̄ δ and
ρδk as in (47) and (48), and then follow the procedure below (27) to obtain an
unbiased sample average estimator for the denominator of (79), in the form (29)
with F replaced by ϕ and (W̄ , ρk) by (W̄ δ, ρδk). For the numerator of (79), we
use the same generalized subsolution/control to construct the change of measure
on Xi, so the unbiased estimator for the numerator is similar to (29) except that

e−nF (Ȳ nn ) is replaced by e−nϕ(Ȳ nn )∇θϕ(Ȳ nn ).

Change of measure on Ui To conduct IS based on a change of measure on Ui
we follow (Dupuis and Wang 2007). For k = 1, 2 we let

βk ∈ argmin
β∈Rm

[
Lθ2(β) + ϕk(β)

]
and αk ∈ argmax

α∈Rm

[
〈α, βk〉 −Hθ

2 (α)
]
,

where Hθ
2 and Lθ2 are defined in (55) and (56), and define W̄k : Rm × [0, 1] → R

as
W̄k(y, t) = −2〈αk, y〉+ 2[ϕk(βk) + 〈αk, βk〉]− 2(1− t)Hθ

2 (αk).

Since ϕ1 is a constant, α1 = 0. Next we define W̄ δ and compute ρδk similarly as
above to obtain a generalized subsolution/control as in Definition 1 (see (Dupuis
and Wang 2007)), and then follow the procedure below (16) to obtain an unbiased
estimator for the denominator of (79). Again the numerator of (79) is estimated
using the same change of measure. The above definitions of W̄k, αk and βk imply
that

W̄1(0, 0) ∧ W̄2(0, 0)= min
k=1,2

(
2(ϕk(βk) + Lθ2(βk)

)
= 2 inf

β∈Rm
[ϕ(β) + Lθ2(β)] = 2γ,

where γ is as defined in (15) with ϕ in place of F . It follows that the estimator for
the denominator constructed using (W̄ δ, ρδk) is δ log 2 - asymptotically optimal.

5.3 Numerical results

5.3.1 Example 1

We use this example with h = m = d = 1 to first compare the two IS schemes
discussed in Sections 2.1 and 2.2 with ordinary Monte-Carlo simulation, and then
solve problems (54) and (53). The parameters of ϕ in (73) are (Λ, ε) = (105, 0.01).
The function G is defined as G(x, θ) = (x− θ)+− 0.4(1.5− θ). We let Θ = [0, 1.5],
n = 100 and η be the standard normal distribution.

Tables 1, 2 and 3 report the performance of estimators for p(θ) as defined in
(50), using ordinary Monte-Carlo simulation, the scheme based on a change of
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measure on Ui = G(Xi, θ) (i.e, the method in (Dupuis and Wang 2004, 2007)),
and our proposed scheme based on a change of measure on Xi respectively. In each
of the three schemes, we generate N independent realizations of the unbiased esti-

mator for p(θ), which is e−nϕ( 1
n

∑n
i=1 G(Xi,θ)) in ordinary Monte-Carlo simulation,

and is in the form of (18) or (29) in the two IS schemes. We report the natural
logarithms of the sample average and the sample standard deviation (scaled by
1/
√
N), denoted as “log sample mean” and “log sample std” respectively, for dif-

ferent values of θ and N . We also report the CPU time, which includes time spent
on sampling and calculating the reported values. In Table 1, some values under
N = 5 × 103 are −∞, because the event 1

n

∑n
i=1G(Xi, θ) > 0 does not occur in

any realization. Moreover, the log sample std values are close to log sample means
in many cases, which means that the sample mean estimates are not stable. With
N = 5 × 105 we get better estimates for p(θ), though the number of realizations
in which the rare event occurs is still very small.

Table 1 Estimation of p(θ) using ordinary Monte-Carlo simulation in Example 1

θ 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

N = 5× 103 log sample mean -7.1308 -35.4495 −∞ −∞ −∞ −∞ -5.2430 -0.8957
log sample std -7.8243 -35.4495 −∞ −∞ −∞ −∞ -6.8907 -4.9723
CPU time (sec) 0.0500 0.0200 0.0200 0.0600 0.0600 0.0400 0.0500 0.0299

N = 5× 105 log sample mean -7.2532 -8.9291 -10.8197 -11.3306 -10.9251 -8.9533 -5.3179 -0.9424
log sample std -10.1896 -11.0293 -11.9710 -12.2264 -12.0237 -11.0423 -9.2264 -7.2831
CPU time (sec) 2.3699 2.8100 2.6100 2.4000 2.5100 2.3999 2.3899 2.2400

The log sample std values in Table 2 are considerably smaller than the log
sample mean values, which means that the sample mean estimates in the IS scheme
that changes measure on Ui are stable. Here, we add a row labeled “prop” to report
the proportions of rare events among all realizations. For each fixed θ, we observe
the event 1

n

∑n
i=1 Ūi > 0 (Ūi is the random variable replacing Ui in the change of

measure) to occur for about 50% of the realizations, a dramatic improvement from
ordinary Monte-Carlo simulation. On the other hand, computation time needed in
this scheme is significantly larger as expected, because constructing any realization
of Ūi requires numerically solving an equation to invert the cumulative distribution
function of Ūi, and we need to solve Nn such equations to estimate p(θ) for a fixed
θ using N samples.

Table 2 Estimation of p(θ) with the change of measure on Ui in Example 1

θ 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

N = 5× 103 log sample mean -7.2107 -9.2225 -10.7867 -11.4086 -10.9536 -8.8700 -5.1780 -0.8774
log sample std -10.8261 -12.7341 -14.2155 -14.8412 -14.3785 -12.3555 -8.8396 -5.1316
CPU time (sec) 24.9300 27.4700 22.0700 20.5300 20.4700 19.4100 17.6200 17.0400

prop 0.4904 0.4908 0.4830 0.4798 0.4792 0.4850 0.4768 0.4650

In Table 3 the log sample std values are also smaller than the log sample mean
values by a clear margin, so the sample mean estimates are more stable than those
in ordinary Monte-Carlo simulation. The prop values are smaller than 50% but
significantly larger than the sample mean values, which means that our proposed
scheme is not as efficient as the scheme based on the change of measure on Ui, but
still significantly better than ordinary Monte-Carlo simulation. The reported CPU
times are significantly lower than those in Table 2 even with the larger sample size
N = 5 × 105, because to simulate the replacement variable X̄i we only need to



Minimization of Rare Event Probabilities 29

draw samples from the standard normal distribution and then suitably translate
and scale these values, a main advantage of the proposed IS scheme over the
existing scheme.

Table 3 Estimation of p(θ) with the change of measure on Xi in Example 1

θ 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

N = 5× 103 log sample mean -7.2653 -9.1440 -10.7649 -11.5153 -10.9374 -8.3427 -5.1589 -0.8984
log sample std -9.9762 -11.2694 -12.0563 -12.7407 -11.8451 -9.5270 -7.3090 -4.9920

CPU time 0.2700 0.0900 0.1299 0.1100 0.1499 0.1000 0.1199 0.0999

N = 5× 105 log sample mean -7.2719 -9.2986 -10.8466 -11.6375 -11.0927 -9.0575 -5.2923 -0.9423
log sample std -12.0156 -13.4715 -14.4857 -14.7782 -14.0001 -12.2827 -9.6416 -7.3022

CPU time 3.7100 5.0000 4.9199 4.3499 3.8299 3.5699 3.3500 3.3699
prop 0.1216 0.0530 0.0195 0.0068 0.0034 0.0040 0.0198 0.3937

Finally, to find the optimal θ that maximizes p(θ) or equivalently gn(θ), we
first solve an SAA problem of the limiting problem (54) to find θ∗ = 0.6229 with
an optimal value 0.0898, by directly using the Matlab nonlinear programming
solver fmincon. We then implement the gradient ascent method to (53) with an
initial point θ0 = θ∗ and a diminishing step size ol = 0.1√

l+1
for 50 iterations.

Figure 1 shows nine trajectories of objective values where the objective values
of (53) and its gradients are estimated by ordinary Monte-Carlo simulation with
N = 2.5 × 106. Figure 2 shows nine trajectories where the objective values and
gradients are estimated using the scheme that changes measure on Xi. The more
concentrated trajectories in Figure 2 shows the effect of variance reduction.
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Fig. 1 Trajectories of objective values of
(53) in the gradient method for Example 1
with ordinary Monte-Carlo simulation
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Fig. 2 Trajectories of objective values of
(53) in the gradient method for Example 1
with the IS scheme from Section 2.2

5.3.2 Example 2

In this section, we consider an example with h = m = d = 5. The ith component
of the function G is defined as

Gi(xi, θi)
.
= (xi − θi)+ − bi(ci − θi),

with b = [0.3, 0.2, 0.3, 0.3, 0.2]T and c = [1, 2, 2, 1, 2]T . The feasible set Θ is [0, c],
and the random variables {Xi}ni=1 are i.i.d. multivariate normal with mean 0 and
a randomly generated covariance matrix. Other parameters used to define the
problem and the algorithm are summarized in Table 4.
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Table 4 Parameters in Example 2

Λ ε n N ol ∆

105 0.01 50 2.5× 106 ol = 0.5√
l+1

10−4

Note that, in such a multidimensional setting, the scheme that changes measure
on Ui becomes impractical due to its computation complexity. The scheme that
changes measure on Xi remains feasible and is used in the gradient method to
estimate the gradients and objective values.

We start by solving the limiting problem (54) by the Matlab function fmincon.
Using different initial points, we find a SAA solution θ∗ = [0.6270, 1.6872, 0.0000,
0.4105, 1.2983]T with the optimal value 0.1143. We then start from θ∗ and apply
the gradient method to problem (53), using IS to evaluate the function and gradient
values. The method stops after 337 iterations with the solution

θ337 = [0.6007, 1.5190, 0.4807, 0.4088, 1.2165]T ,

the optimal value 0.3208, and p(θ337) = 10−7. The proportion of rare event among
all realization is about 0.005%, which is much larger than the probability p(θ337),
showing the effect of IS. Figure 3 displays objective values at the iterations.
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Fig. 3 Objective values of (53) for the gra-
dient method in Example 2
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Fig. 4 Objective values of (53) for the gra-
dient method in Example 3 (n = 50)

5.3.3 Example 3

In this example, we let h = d = 5 and m = 1. The function G is defined as

G(x, θ) = fT (x− θ)+ − bT (c− θ), θ ∈ Θ ⊂ Rd, x ∈ Rd,

with b = [0.3, 0.2, 0.3, 0.3, 0.2]T , c = [1, 2, 2, 1, 2]T and f = [1, 1, 1, 1, 1]T . The dis-
tribution of Xi is the same as in Example 2, and Θ is [0, c]. We use this example to
compare the solutions to (53) and the buffered probability problem (72) with n =
50. SAA solution to the limiting problem is θ∗ = [0.7863, 1.2361, 0.7860, 0.7647,
0.8842]T with the optimal value 0.0894. For the problem (53), we let N = 5× 105,
ol = 0.5√

l+1
and ∆ = 10−4. After 1886 iterations, the stopping criterion is satisfied.

The optimal solution is θ1886 = [0.7359, 1.1708, 0.7526, 0.7656, 0.8524]T , with the
optimal value 0.1020 and p(θ1886) = 6.1 × 10−3. Approximately 2.78% of the re-
alizations are rare events. Figure 4 shows objective values at the iterations, where
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oscillations in the paths of objective values are largely due to variations in esti-
mating objective values and gradients (oscillations in the Figure 3 in Example 2
are due to the same reason).

For this example the problem (72) becomes

min
λ≥0,θ̄∈λΘ

E

[
1

n

n∑
i=1

fT (λXi − θ̄)+ − bT (λc− θ̄) + 1

]+

.

In the application of the gradient method, we use the IS scheme provided in Section
2.2 with F =∞1Ac to find the change of measure on Xi, to estimate the objective
values and gradients. We arbitrarily select an initial point (θ0, λ0) = (f/2, 1),
which corresponds to (θ̄0, λ0) = (λ0θ0, λ0) = (f/2, 1). We then use a fixed length
stepsize ol = 0.1‖Ôh(θ̄l, λl)‖−1

2 (i.e., ‖θ̄l+1 − θ̄l‖2 = 0.1 for all l) to achieve a
relatively large progress at each step. We also compute the value θl = θ̄l/λl at each
iteration. The solution we find is θ292 = [0.7314, 1.1534, 0.7312, 0.7631, 0.8369]T

with the optimal value 0.0159. Figure 5 shows the objective values at each iteration.
Before the algorithm terminates, the objective value at iteration l is not necessarily
close to the buffered probability evaluated at θl, because λl may be far from the
optimal λ that defines the buffered probability. After (72) is solved, we calculate
the probabilities and buffered probabilities at the θl value of each iteration and plot
them in Figure 6, where the solid and dashed lines represent buffered probabilities
and probabilities respectively.
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Fig. 5 Objective values of (72) for the gra-
dient method in Example 3 (n = 50)
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Fig. 6 Probabilities and buffered probabili-
ties corresponding to Figure 5

References

Barrera J, Homem-de Mello T, Moreno E, Pagnoncelli BK, Canessa G (2016) Chance-
constrained problems and rare events: An importance sampling approach. Mathematical
Programming 157(1):153–189

Bertsekas DP (2009) Convex Optimization Theory. Athena Scientific Belmont
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